2,628 research outputs found

    Unravelling the Role of Nitrogen in Surface Chemistry and Oxidation Evolution of Deep Cryogenic Treated High-Alloyed Ferrous Alloy

    Get PDF
    The role of nitrogen, introduced by deep cryogenic treatment (DCT), has been investigated and unraveled in relation to induced surface chemistry changes and improved corrosion resistance of high-alloyed ferrous alloy AISI M35. The assumptions and observations of the role of nitrogen were investigated and confirmed by using a multitude of complementary investigation techniques with a strong emphasis on ToF-SIMS. DCT samples display modified thickness, composition and layering structure of the corrosion products and passive film compared to a conventionally heat-treated sample under the same environmental conditions. The changes in the passive film composition of a DCT sample is correlated to the presence of the so-called ghost layer, which has higher concentration of nitrogen. This layer acts as a precursor for the formation of green rust on which magnetite is formed. This specific layer combination acts as an effective protective barrier against material degradation. The dynamics of oxide layer build-up is also changed by DCT, which is elucidated by the detection of different metallic ions and their modified distribution over surface thickness compared to its CHT counterpart. Newly observed passive film induced by DCT successfully overcomes the testing conditions in more extreme environments such as high temperature and vibrations, which additionally confirms the improved corrosion resistance of DCT treated high-alloyed ferrous alloys

    Coupled role of alloying and manufacturing on deep cryogenic treatment performance on high-alloyed ferrous alloys

    Get PDF
    This study focuses on influence of alloying content and type of manufacturing on the effectiveness of deep cryogenic treatment (DCT) on properties of selected high-alloyed ferrous alloys (HAFA): EN HS6-5-2, EN HS6-5-2-5, EN HS6-5-3 and EN HS12-1-4. In order to evaluate the dependency of DCT performance on chemical composition and manufacturing type, the microstructure, hardness, impact and fracture toughness and fatigue properties were analyzed. Additionally, the fatigue data was evaluated using an adapted strain-life model in order to understand the unique effects of DCT with selected factors and provide a model for estimating the fatigue limit of DCT HAFA. The study indicates that DCT affects carbide precipitation, size and morphology of nanocarbides, average distance between carbides and nanocarbides, as well as the base matrix (martensitic laths). The induced microstructural changes cause an overall positive change of mechanical properties in selected HAFA, which correlates well with individual alloying and manufacturing differences. Overall, DCT has greater effect on wrought HAFA than powder metallurgy manufactured HAFA, at which high content of W and Co generally degenerates the DCT induced microstructure modifications

    Influence of the Deep Cryogenic Treatment on AISI 52100 and AISI D3 Steel’s Corrosion Resistance

    Get PDF
    The effect of deep cryogenic treatment (DCT) on corrosion resistance of steels AISI 52100 and AISI D3 is investigated and compared with conventional heat-treated counterparts. DCT’s influence on microstructural changes is subsequently correlated to the corrosion resistance. DCT is confirmed to reduce the formation of corrosion products on steels’ surface, retard the corrosion products development and propagation. DCT reduces surface cracking, which is considered to be related to modified residual stress state of the material. DCT’s influence on each steel results from the altered microstructure and alloying element concentration that depends on steel matrix and type. This study presents DCT as an effective method for corrosion resistance alteration of steels

    AS-206A preliminary L/V operational trajectory and guidance presettings

    Get PDF
    S-1B stage steering program and iterative guidance mode presettings for mission AS-206A and associated launch vehicle operational trajectory and performance characteristic

    Sulfur reduction in sediments of marine and evaporite environments

    Get PDF
    Transformations of sulfur in sediments of ponds ranging in salinities from that of normal seawater to those of brines saturated with sodium chloride were examined. The chemistry of the sediment and pore waters were focused on with emphasis on the fate of sulfate reduction. The effects of increasing salinity on both forms of sulfur and microbial activity were determined. A unique set of chemical profiles and sulfate-reducing activity was found for the sediments of each of the sites examined. The quantity of organic matter in the salt pond sediments was significantly greater than that occurring in the adjacent intertidal site. The total quantitative and qualitative distribution of volatile fatty acids was also greater in the salt ponds. Volatile fatty acids increased with salinity

    Assessment of deep cryogenic heat-treatment impact on the microstructure and surface chemistry of austenitic stainless steel

    Get PDF
    This systematic study deals with the influence of deep cryogenic treatment (DCT) on microstructure and surface properties of austenitic stainless steel AISI 304 L on different length scales and in the surface region. The study incorporates different analysis techniques, such as light microscopy, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), electron backscatter diffraction (EBSD), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ions mass spectrometry (ToF-SIMS). DCT modifies the microstructure of treated samples through promoted precipitation of Cr7C3 carbides, induced twinning and α-martensite formation. Additionally, XPS/AR-XPS and ToF-SIMS results also provide evidence of modified oxidation dynamics of DCT samples compared to conventionally heat-treated samples with increase of the Fe-oxide fraction and lower Cr-oxide fraction in the surface oxide layer. An evaluation of oxidation states and ions distribution within the surface layer of deep cryogenically heat-treated stainless steel AISI 304 L is conducted with XPS/ToF-SIMS. These results are correlated with the microstructural changes and nitrogen diffusivity induced by DCT, which are associated with modified oxidation behaviour of AISI 304 L. These results provide further understanding of DCT dynamic on the overall microstructure and the corresponding surface behaviour

    Ab-initio study of structure and dynamics properties of crystalline ice

    Full text link
    We investigated the structural and dynamical properties of a tetrahedrally coordinated crystalline ice from first principles based on density functional theory within the generalized gradient approximation with the projected augmented wave method. First, we report the structural behaviour of ice at finite temperatures based on the analysis of radial distribution functions obtained by molecular dynamics simulations. The results show how the ordering of the hydrogen bonding breaks down in the tetrahedral network of ice with entropy increase in agreement with the neutron diffraction data. We also calculated the phonon spectra of ice in a 3x1x1 supercell by using the direct method. So far, due to the direct method used in this calculation, the phonon spectra is obtained without taking into account the effect of polarization arising from dipole-dipole interactions of water molecules which is expected to yield the splitting of longitudinal and transverse optic modes at the Gamma-point. The calculated longitudinal acoustic velocities from the initial slopes of the acoustic mode is in a reasonable agreement with the neutron scatering data. The analysis of the vibrational density of states shows the existence of a boson peak at low energy of translational region a characteristic common to amorphous systems.Comment: International symposium on structure and dynamics of heterogeneous system SDHS'0

    Constraints, Histones, and the 30 Nanometer Spiral

    Full text link
    We investigate the mechanical stability of a segment of DNA wrapped around a histone in the nucleosome configuration. The assumption underlying this investigation is that the proper model for this packaging arrangement is that of an elastic rod that is free to twist and that writhes subject to mechanical constraints. We find that the number of constraints required to stabilize the nuclesome configuration is determined by the length of the segment, the number of times the DNA wraps around the histone spool, and the specific constraints utilized. While it can be shown that four constraints suffice, in principle, to insure stability of the nucleosome, a proper choice must be made to guarantee the effectiveness of this minimal number. The optimal choice of constraints appears to bear a relation to the existence of a spiral ridge on the surface of the histone octamer. The particular configuration that we investigate is related to the 30 nanometer spiral, a higher-order organization of DNA in chromatin.Comment: ReVTeX, 15 pages, 18 figure
    corecore